(2x-3)(x+7)=1+11x-x^2

Simple and best practice solution for (2x-3)(x+7)=1+11x-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)(x+7)=1+11x-x^2 equation:



(2x-3)(x+7)=1+11x-x^2
We move all terms to the left:
(2x-3)(x+7)-(1+11x-x^2)=0
We get rid of parentheses
x^2-11x+(2x-3)(x+7)-1=0
We multiply parentheses ..
x^2+(+2x^2+14x-3x-21)-11x-1=0
We get rid of parentheses
x^2+2x^2+14x-3x-11x-21-1=0
We add all the numbers together, and all the variables
3x^2-22=0
a = 3; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·3·(-22)
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{66}}{2*3}=\frac{0-2\sqrt{66}}{6} =-\frac{2\sqrt{66}}{6} =-\frac{\sqrt{66}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{66}}{2*3}=\frac{0+2\sqrt{66}}{6} =\frac{2\sqrt{66}}{6} =\frac{\sqrt{66}}{3} $

See similar equations:

| 0.25(8x+4)=2x-4 | | 71+57+a=180 | | 4t−9=3t | | 2+2g−5=9+4g | | -2g+11=-32 | | 6+4q=5q | | 9-2y=3y-1 | | –10−7m=–6m | | –5n=–4n+4 | | t/11+16=19 | | 10w+10=9w | | x+65+75+48=180 | | k/17-18=-17 | | z(1/2)=11 | | -13/5+2/3n-13/5+2/3=n | | x+2x(x+4)=4x-2 | | n/9+6=2 | | 180=x+65+75+48 | | 8x−4x+3=4x+5−2 | | 55=5.z | | 4(2x-9)=10x-5 | | 4x-16=2(3x+1) | | 90=60+41+x | | 20.x+7=-23 | | 3(a-2)=-(2a-3) | | 39÷5=2m | | 3(10-y)+4y=38 | | –9p=–8p−10 | | -13/5+2/3=n | | p+2=87​ | | 3/7d=15 | | 18x-2=5x+4 |

Equations solver categories